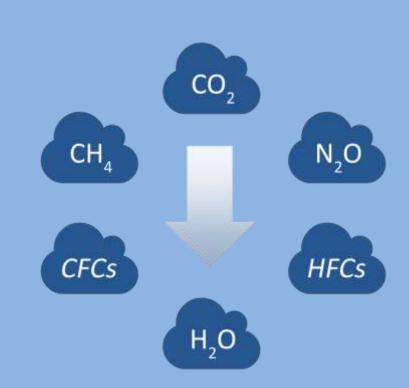
Modelling & Mitigation of N₂O Emissions from Water Treatment


Hydro Nation Scholars Programme

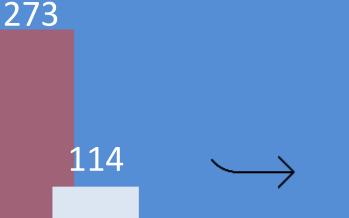
Bilal Shariq James Watt School of Engineering, University of Glasgow 2951593s@student.gla.ac.uk www.hydronationscholars.scot

Target

year

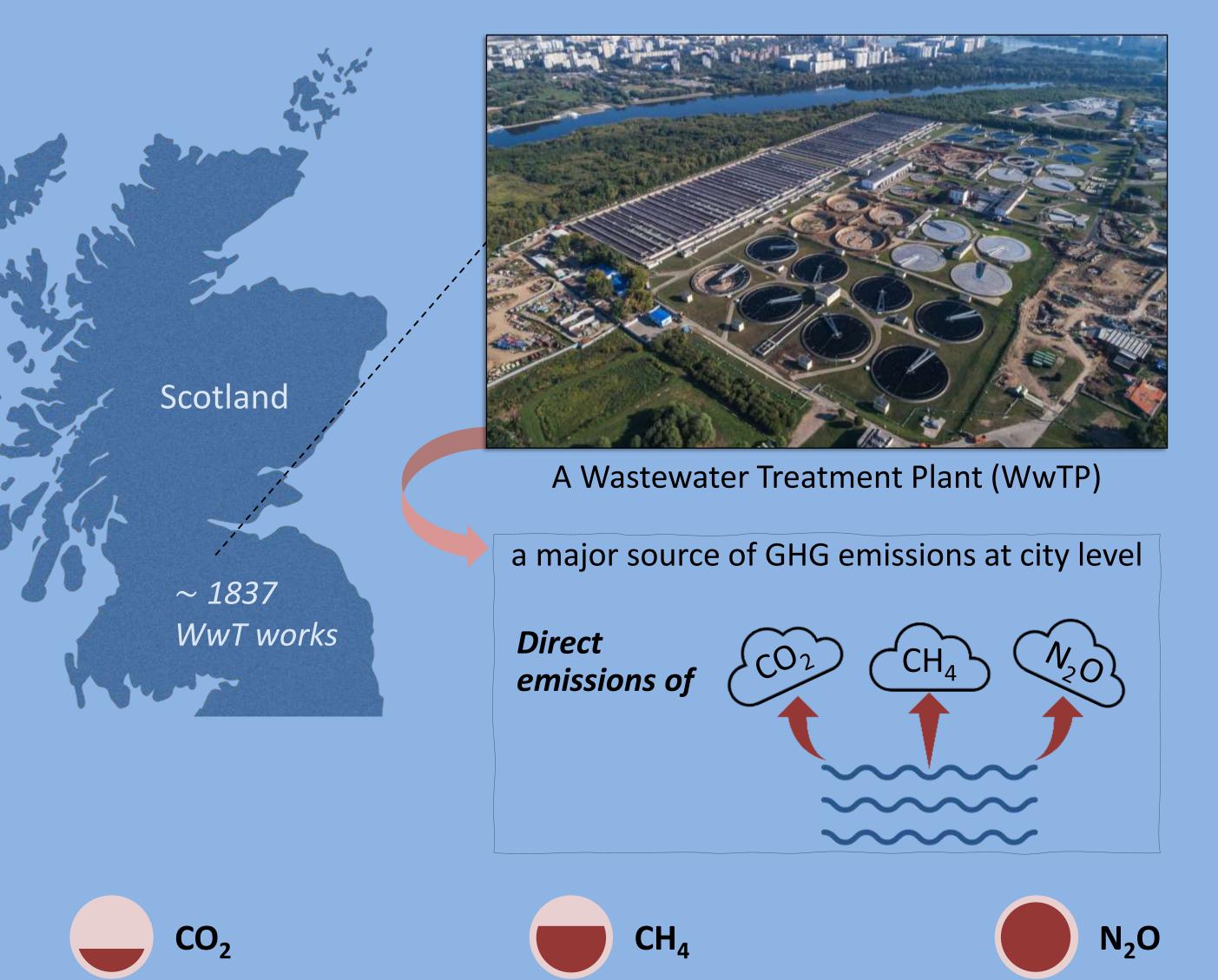
GHG Emissions in Wastewater Treatment Works

The *net-zero emissions* target¹ – net emissions account for the target year must be at least 100% lower than 1990 levels


UK-wide: 2050

Scotland's own commitment: 2045

N₂O in WwTPs


Global Warming Potential (GWP)³: The relative amount of heat trapped by a GHG compared to CO₂ over 100 years.

GWP ■ Lifetime (years)

CH₄

prevalent in sewerage

CO2 CH4 N20

• N_2O emission factor (EF) = amount of N_2O emitted relative to the nitrogen load

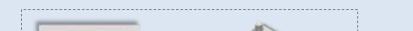
• 1% increase in N₂O EF can lead to a 30% increase in the overall carbon footprint⁴

N₂O emissions prime source: Biological Nitrogen Removal (BNR) process **BNR**: the conversion of harmful nitrogen compounds (like ammonia) into harmless N₂ gas • involves <u>Nitrification</u> (ammonia \rightarrow nitrate) and <u>Denitrification</u> (nitrate \rightarrow nitrogen gas) • is responsible for the majority of N₂O emissions (~ 81 – 99.8%) in a WwTP⁵

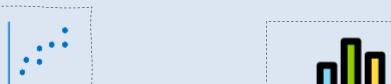
due to certain enzyme imbalances ii.

under low O₂ conditions

due to incomplete denitrification (low C/N ratio ..)

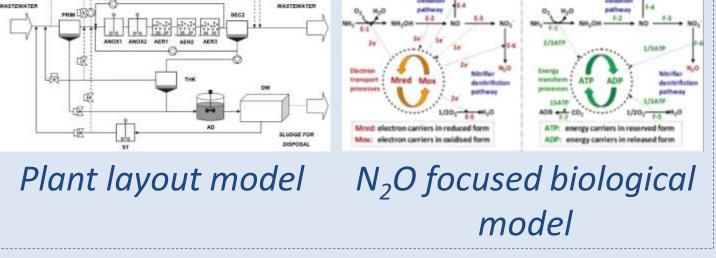

Treated effluent for discharge

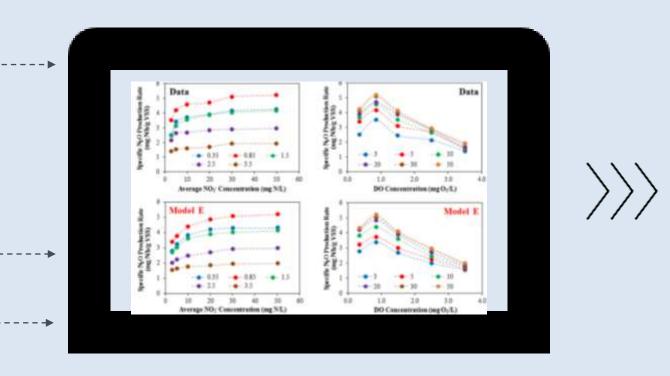
 N_2O


 consumption rather than systems and sludge overall carbon footprint² organic matter conversion handling Climate Change (Emissions Reduction Targets) (Scotland) Act 2019 Song, C. (2024). Nature Sustainability, 7. 	 Are there other comparable N₂O emission pathways? Chemical reactions? Comammox? Understanding Global Warming Potentials (2024) U.S. Environmental Protection Agency. Law, Y. (2012). Phil. Trans. R. Soc. B, 367. Yang, Y. (2024). Science of the Total Environment, 930.
Challenges	Objectives
Knowledge Gap: limited understanding of N ₂ O production pathways, mechanisms, influencing factors.	Develop a state-of-the-art N ₂ O biokinetic process model.
Lack of N ₂ O emissions data from Scottish WwT works.	Monitor N_2O emissions in selected WwTPs in collab. with <i>Scottish Water</i> to refine and validate the developed model.
Existing 'Off-the-shelf' solutions might be ineffective in Scottish contexts.	Calculate model-based N_2O footprints and associated uncertainties for the WwTPs across Scotland.
Scottish WwT works have specific characteristics (incl. trickling filters, decentralised plants, organic carbon removal) requiring tailored approaches.	Develop N ₂ O mitigation guidelines, assisting Scottish water industries in reducing scope 1 emissions from water treatment practices.
Aim \sum To develop a state-of-the-art N ₂ O estimation model to quantify emissions from Scottish full-scale WwT works, identify high-emission areas, and inform the development of targeted mitigation strategies.	
NAathadalaan	

~ 86% of the WwTP's

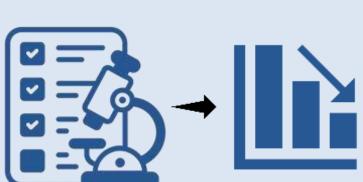
ivietnoaology


primarily linked to energy


 $\rightarrow N_2O$ data from monitoring campaigns

Data from Scottish Water

State-of-the-art benchmark simulation models


Developed N₂O model including further biokinetics of key microbes

Model implementation

 N_2O $\langle \cdot \rangle$ \checkmark

Model-based estimations of N₂O

Mitigation guidelines

Acknowledgements

Finance and Support: Hydro Nation Scholarship Program (HNSP), Scottish Government.

Supervisory Team: Dr Carlos Domingo-Felez & Prof William Sloan (University of Glasgow), and Dr Gavin Melaugh (University of Edinburgh).

